Printed	Pages -	6
---------	---------	---

Roll No.:....

328456(28)

B. E. (Fourth Semester) Examination, April-May 2021

(Electronics & Telecommunication Engg. Branch)

ELECTROMAGNETIC FIELDS AND TRANSMISSION LINES

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each unit is compulsory carry 2 marks. Attempt any two parts from (b), (c) and (d) each carry 7 marks. Assume suitable data if required

2. (n) Define shvergence of a veror and write significance

- (a) Write the differential volume and surfaces in spherical co-ordinates system.
 - (b) Trabnsform the vector 7

 $\vec{A} = \sin^2\theta\cos\phi a_r + \cos^2\phi a_\theta - \sin\phi a_\theta$

from spherical to cylinderical coordinates and than evaluate it at $P = (2, \pi/2, \pi/2)$

- (c) Find the vector component of $\vec{F} = 10a_x 6a_y + 5a_z$ that is parallel to $\vec{G} = 0.1a_x + 0.2a_y + 0.3a_z$ and find the vector component of \vec{F} that is perpendicular to \vec{G}
- (d) An infinite uniform line charge $\rho_t = \frac{2nC}{m}$ lies along the x axis in free space, while point charges of 8 nC each are located at (0, 0, 1) and (0, 0, -1). Find \vec{E} at (2, 3, -4).

be Unit-II to same thin there

- 2. (a) Define divergence of a vector and write significance
 of divergence.
 - (b) Let $\vec{F} = 6xyz^2a_x + 3x^2z^2a_y + 6x^2yza_z \frac{C}{m^2}$. Find the

total charge lying within the region bounded by x = 1 and 3, y = 0 and 1, and z = -1 and 1 by separately evaluating each side of the divergence theorem.

- (c) In free space, a line charge $\rho_r = 80 \frac{nC}{m}$ lies along the entire z axis, while a point charge of 100 nC is located at (1, 0, 0). Find the potential difference V_{PQ} given P (2, 1, 0) and Q (3, 2, 5).
- (d) Given the potential field $V = \frac{(50\sin\theta)}{r^2}$ in free speace:
 - (i) determine whether V satisfies Laplace's equation
 - (ii) find the total charge stored inside the spherical shell 1 < r < 2

Unit-III

- 3. (a) Write Biot Savart's Law.
 - (b) Find \vec{H} in rectanular components at P(2, 3, 4) if there is a current filament located at x = -1, y = 2. 7

(c) A current element $I_1 \overrightarrow{\Delta L_1} = 10^{-5} a_z$ Am, is located at PI(1, 0, 0), while a second element, $I_2 \overrightarrow{\Delta L_2} = 10^{-5}$ $\left(0.6a_x - 2a_y + 3a_z\right)$ Am, is located at P2(-1, 0, 0) both in free space. Find the vector force on $I_2 \overrightarrow{\Delta L_2}$ by $I_1 \overrightarrow{\Delta L_1}$.

(d) The magnetic flux density in a magnetic material with Xm = 9 is given in a certain region as $\vec{B} = 0.005y^2a_xT$. At y = 0.8 m, find the magnitude

of
$$J$$
, \vec{J}_b and \vec{J}_T . Note
$$\begin{cases} x_n = 9 \\ y = 0.8m \end{cases}$$

2

Unit-IV

4. (a) Write Faraday's law.

(b) Write Maxwell's equation in integral and differential form and prove that in air EMW moves with velocity of light.

(c) Assume a homogeneous material of infinite extent

with $\epsilon = 2 \times 10^{-10} \frac{F}{m}$, $\mu = 1.25 \times 10^{-5} \frac{H}{m}$, and

- $\sigma = 0$. Let $\vec{E} = 400 \cos(10^9 t kz) a_x \frac{V}{m}$. If all the field vary sinusoidally, use Maxwell's equations to find \vec{D} , \vec{B} , \vec{H} and k.
 - (d) State and prove Poynting Theorem.

Unit-V

- 5. (a) Differentiate lossless and distortion less transmission line.
 - (b) Define reflection coefficient and standing wave ratio and derive the relationship between these two for incorrectly terminated two wire transmission line.
 - (c) An open wire transmission line having characteristic impedance of 600Ω is terminated by a resistive load of 900Ω . Calculate the voltage standing wave ratio and design a single with matching to match the load.
 - (d) A lossless transmission line having $Z_0 = 120\Omega$ is operating at $\omega = 5 \times 10^8$ rad/sec. If the velocity on the line is 2.4×10^5 m/sec. Find (i) L (ii) C (iii) Let Z_L be represented by an inductance 0.6 μH in

7

2

series with a 100Ω , them find reflected coefficient and standing wave ratio.

omy simistinally, usq Maxicall's equinouni q

Und D. E. Handle

theoretic and proved for ming. Theoretic

7-tim

- (n) Differential trislem and distration less francontains
- 7 7 200 ...
 - (b) Define reflection coefficient and sending wave miss and derive the relationship between these two for
 - (c) Are open wire promission line to only characterized impedance of 60002-ya terminated by a resistive
- to the trial design a ample with multiling to much the
 - A longless amount and massing and A (fit)
 - equinificative = 5×10° endress: If the vencous on; the line is 2-ts 10° mesor. Find (i) L. (ii) C (iii) Let